Elliptic Complexes and Generalized Poincaré Inequalities
نویسنده
چکیده
We study first order differential operators P = P(D) with constant coefficients. The main question is under what conditions a generalized Poincaré inequality holds D(f − f 0) L p ≤ C Pf L p , for some f 0 ∈ ker P. We show that the constant rank condition is sufficient, Theorem 3.5. The concept of the Moore-Penrose generalized inverse of a matrix comes into play.
منابع مشابه
Robust Solvers for Symmetric Positive Definite Operators and Weighted Poincaré Inequalities
An abstract setting for robustly preconditioning symmetric positive definite (SPD) operators is presented. The term “robust” refers to the property of the condition numbers of the preconditioned systems being independent of mesh parameters and problem parameters. Important instances of such problem parameters are in particular (highly varying) coefficients. The method belongs to the class of ad...
متن کاملRefined Convex Sobolev Inequalities
This paper is devoted to refinements of convex Sobolev inequalities in the case of power law relative entropies: a nonlinear entropy–entropy production relation improves the known inequalities of this type. The corresponding generalized Poincaré type inequalities with weights are derived. Optimal constants are compared to the usual Poincaré constant.
متن کاملTwo-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants
We present a general numerical method for computing guaranteed two-sided bounds for principal eigenvalues of symmetric linear elliptic differential operators. The approach is based on the Galerkin method, on the method of a priori–a posteriori inequalities, and on a complementarity technique. The two-sided bounds are formulated in a general Hilbert space setting and as a byproduct we prove an a...
متن کاملPU BL IC Two - sided bounds for eigenvalues of differential operators with applications to Friedrichs ’ , Poincaré , trace , and similar constants
We present a general numerical method for computing guaranteed two-sided bounds for principal eigenvalues of symmetric linear elliptic differential operators. The approach is based on the Galerkin method, on the method of a priori-a posteriori inequalities, and on a complementarity technique. The two-sided bounds are formulated in a general Hilbert space setting and as a byproduct we prove an a...
متن کاملJOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré inequalities
Poincaré type inequalities are a key tool in the analysis of partial differential equations. They play a particularly central role in the analysis of domain decomposition and multilevel iterative methods for second-order elliptic problems. When the diffusion coefficient varies within a subdomain or within a coarse grid element, then condition number bounds for these methods based on standard Po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008